top of page
Additive Manufacturing of Superalloys
  1. S. Antonov, A. DesprésC. Mayer, G. Martin and P. Kontis, Boron trapping at dislocations in an additively manufactured polycrystalline superalloy, Materialia 30 (2023) 101801 (DOI-Open Access).

  2. J. Xu, P. Kontis, R. Peng and J.J. Moverare, Modelling of Additive Manufacturability of Nickel-Based Superalloys for Laser Powder Bed Fusion, Acta Materialia 240 (2022) 118307 (DOI).

  3. A. Després, S. Antonov, C. Mayer, M. Veron, Edgar F. Rauch, C. Tassin, J.-J. Blandin, P. Kontis and Guilhem Martin, Revealing the true partitioning character of zirconium in additively manufactured polycrystalline superalloys, Additive Manufacturing Letters (2021) n-press (DOI-Open Access).

  4. A. Després, S. Antonov, C. Mayer, C. Tassin, J.-J. Blandin, P. Kontis and G. Martin, On the role of boron, carbon and zirconium on hot cracking and creep resistance of additively manufactured polycrystalline superalloys, Materialia 19 (2021) 101193 (arXiv) (DOI).

  5. P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. Dendievel, B. Gault and G. Martin, Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Materialia 177 (2019) 209-221 (DOI) (arXiv).

  6. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.-J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Hot Cracking Mechanism Affecting a Non-weldable Ni-based Superalloy Produced by Selective Electron Beam Melting, Acta Materialia 142 (2018) 82-94 (DOI).

​
bottom of page